[image:]

09_Security_Governance/DB_Security_Best_Practices.docx

Databricks Security Best Practices Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	2.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Security & Compliance Team

1. Executive Summary
This comprehensive guide provides security best practices for Databricks deployments, covering identity management, network security, data protection, and compliance requirements. Following these guidelines ensures a secure, enterprise-grade data platform that meets regulatory requirements while enabling data teams to work efficiently.
Security Principles
The security approach for Databricks follows these core principles:
Defense in Depth: Multiple layers of security controls
Least Privilege: Users and services have minimum necessary permissions
Zero Trust: Verify explicitly, never trust by default
Data-Centric Security: Protect data at rest, in transit, and in use
Auditability: Complete visibility into all access and operations
2. Security Architecture Overview
2.1 Layered Security Model
┌───┐
│ DATABRICKS SECURITY ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ IDENTITY & ACCESS MANAGEMENT │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ SSO │ │ SCIM │ │ Service │ │ Groups │ │ │
│ │ │ (SAML/ │ │ (User/ │ │ Principals │ │ & Roles │ │ │
│ │ │ OIDC) │ │ Group │ │ (OAuth) │ │ │ │ │
│ │ │ │ │ Sync) │ │ │ │ │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │ │
│ ┌───┐ │
│ │ NETWORK SECURITY │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ VPC/VNet │ │ Private │ │ IP Access │ │ Firewall │ │ │
│ │ │ Peering │ │ Link │ │ Lists │ │ Rules │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │ │
│ ┌───┐ │
│ │ DATA SECURITY │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │Unity Catalog│ │ Encryption │ │ Secrets │ │ Data │ │ │
│ │ │ (Access │ │ (At Rest/ │ │ Management │ │ Masking │ │ │
│ │ │ Control) │ │ In Transit) │ │ │ │ │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │ │
│ ┌───┐ │
│ │ AUDIT & COMPLIANCE │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ Audit │ │ Data │ │ Compliance │ │ Security │ │ │
│ │ │ Logging │ │ Lineage │ │ Reporting │ │ Alerts │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │
└───┘
2.2 Shared Responsibility Model
Understanding the division of security responsibilities between Databricks and customers:
	Security Domain
	Databricks Responsibility
	Customer Responsibility

	Infrastructure
	Control plane security, updates, availability
	Cloud account configuration, VPC setup

	Network
	Control plane network security
	Customer VPC, private link, IP access lists

	Data
	Platform encryption capabilities
	Data classification, access policies

	Identity
	SSO/SCIM integration support
	IdP configuration, user lifecycle

	Compliance
	Platform certifications (SOC2, HIPAA)
	Data handling, regulatory compliance

3. Identity and Access Management
3.1 Single Sign-On (SSO) Configuration
SSO ensures users authenticate through your organization's identity provider, providing centralized credential management and enabling MFA enforcement.
SAML Configuration (Okta Example)
Account-level SSO configuration via Databricks Account Console
These settings apply to all workspaces in the account

saml_config = {
 "saml_enabled": True,
 "saml_config": {
 # Identity Provider Entity ID - unique identifier from your IdP
 "idp_entity_id": "http://www.okta.com/exk123456789",

 # SSO URL - where users are redirected for authentication
 "idp_sso_url": "https://company.okta.com/app/databricks/exk123456789/sso/saml",

 # IdP's X.509 certificate for signature verification
 "idp_certificate": """-----BEGIN CERTIFICATE-----
MIIDpDCCAoygAwIBAgIGAX...
-----END CERTIFICATE-----""",

 # Databricks Service Provider settings
 "sp_entity_id": "https://accounts.cloud.databricks.com/saml/sp/123456",
 "sp_acs_url": "https://accounts.cloud.databricks.com/saml/callback"
 }
}

Best practices:
1. Enable SSO at account level (applies to all workspaces)
2. Configure IdP to include group membership in SAML assertions
3. Map IdP groups to Databricks groups for automated permissions
4. Enable just-in-time provisioning for automatic user creation
OIDC Configuration for Service Principals
OIDC configuration enables OAuth-based authentication
Particularly useful for service principals and machine-to-machine auth

oidc_config = {
 "issuer": "https://login.microsoftonline.com/{tenant_id}/v2.0",
 "client_id": "<application_id>",
 "authorization_endpoint": "https://login.microsoftonline.com/{tenant_id}/oauth2/v2.0/authorize",
 "token_endpoint": "https://login.microsoftonline.com/{tenant_id}/oauth2/v2.0/token"
}

Token exchange for workload identity
Allows cloud workloads to access Databricks without stored credentials
from databricks.sdk import WorkspaceClient
from databricks.sdk.credentials import AzureServicePrincipalCredentials

Using Azure AD workload identity
w = WorkspaceClient(
 host="https://adb-123456789.azuredatabricks.net",
 credentials=AzureServicePrincipalCredentials(
 azure_tenant_id="tenant-id",
 azure_client_id="client-id"
 # No client secret needed with workload identity!
)
)
3.2 SCIM Provisioning
SCIM (System for Cross-domain Identity Management) automates user and group synchronization from your identity provider to Databricks.
SCIM endpoint configuration for automated user/group sync
This ensures Databricks users stay synchronized with your IdP

scim_endpoint = "https://accounts.cloud.databricks.com/api/2.0/accounts/{account_id}/scim/v2"

Okta SCIM integration settings
okta_scim_config = {
 "base_url": scim_endpoint,
 "unique_identifier": "userName",
 "authentication_mode": "OAUTH", # Recommended over API tokens
 "oauth_token_url": "https://accounts.cloud.databricks.com/oidc/oauth/token",
 "oauth_scopes": ["groups", "users"]
}

Group push configuration - which IdP groups to sync to Databricks
group_push_config = {
 "push_groups": [
 # Map IdP groups to Databricks for role-based access
 "DataEngineers", # Will have data engineering permissions
 "DataScientists", # Will have ML/notebook permissions
 "DataAnalysts", # Will have read-only analytics access
 "WorkspaceAdmins", # Will have admin permissions
 "SecurityTeam" # Will have audit/compliance access
],
 "attribute_mapping": {
 "userName": "email", # Use email as username
 "displayName": "fullName", # Display name mapping
 "externalId": "employeeId" # External ID for correlation
 }
}

Benefits of SCIM:
1. Automatic user deprovisioning when employees leave
2. Group membership changes reflected immediately
3. No manual user management in Databricks
4. Audit trail of identity changes
3.3 Service Principals
Service principals provide machine identity for automated processes, CI/CD pipelines, and external applications.
from databricks.sdk import AccountClient, WorkspaceClient
from databricks.sdk.service.iam import ServicePrincipal

Create service principal at account level
account_client = AccountClient(
 host="https://accounts.cloud.databricks.com",
 account_id="your-account-id"
)

Create service principal with descriptive name
sp = account_client.service_principals.create(
 display_name="production-etl-pipeline",
 active=True
)

Create OAuth secret (preferred over PATs for service principals)
This generates a client_id and client_secret for OAuth authentication
oauth_secret = account_client.service_principal_secrets.create(
 service_principal_id=sp.id
)

print(f"Service Principal ID: {sp.id}")
print(f"Application ID (client_id): {sp.application_id}")
print(f"Client Secret: {oauth_secret.secret}") # Store securely - only shown once!

IMPORTANT: Store credentials in your secrets manager
Examples: AWS Secrets Manager, Azure Key Vault, HashiCorp Vault

Assign workspace access to service principal
account_client.workspace_assignment.update(
 workspace_id=12345678901234, # Target workspace ID
 principal_id=sp.id,
 permissions=["USER"] # Or ["ADMIN"] for admin access
)

Grant Unity Catalog privileges to service principal
Do this in the workspace where the service principal needs access
w = WorkspaceClient()
w.statement_execution.execute_statement(
 warehouse_id="sql_warehouse_id",
 statement=f"""
 -- Grant catalog access
 GRANT USE CATALOG ON CATALOG production TO `{sp.application_id}`;
 GRANT USE SCHEMA ON SCHEMA production.etl TO `{sp.application_id}`;
 GRANT SELECT, MODIFY ON SCHEMA production.etl TO `{sp.application_id}`;
 """
)
3.4 Personal Access Tokens (PAT) Management
PATs should be used carefully and with proper controls:
from databricks.sdk import WorkspaceClient
from datetime import datetime, timedelta

w = WorkspaceClient()

Best Practice 1: Set workspace-level token policies
Configure in Admin Console > Workspace Settings
token_policy = {
 "maxTokenLifetimeDays": 90, # Maximum token lifetime
 "enableTokens": True, # Enable/disable PAT usage
 "requireTokenComment": True # Force documentation of token purpose
}

Best Practice 2: Audit existing tokens
print("Existing tokens and their expiry:")
for token in w.tokens.list():
 expiry = datetime.fromtimestamp(token.expiry_time / 1000)
 days_until_expiry = (expiry - datetime.now()).days

 if days_until_expiry < 30:
 print(f" WARNING: Token '{token.comment}' expires in {days_until_expiry} days")
 else:
 print(f" Token '{token.comment}' expires: {expiry.date()}")

Best Practice 3: Create tokens with proper metadata and expiry
new_token = w.tokens.create(
 comment="CI/CD pipeline - Data Engineering team - expires 2025-04-29",
 lifetime_seconds=90 * 24 * 60 * 60 # 90 days maximum
)

Best Practice 4: Prefer OAuth over PATs for service principals
PATs are user-specific; OAuth is better for automation

Best Practice 5: Revoke unused tokens
w.tokens.delete(token_id="token-id-to-revoke")
4. Network Security
4.1 VPC/VNet Configuration
Deploy Databricks in your own virtual network for enhanced network isolation:
AWS VPC Configuration for Databricks
aws_vpc_config = {
 "vpc_id": "vpc-0123456789abcdef0",

 # Subnets must have outbound internet access (NAT Gateway)
 "subnet_ids": [
 "subnet-abc123", # Private subnet AZ-a
 "subnet-def456" # Private subnet AZ-b
],

 # Security group for Databricks clusters
 "security_group_ids": ["sg-12345678"],

 # Recommended VPC endpoints for private connectivity
 "vpc_endpoints": {
 "s3": "vpce-s3-endpoint", # S3 access without internet
 "sts": "vpce-sts-endpoint", # AWS STS for authentication
 "kinesis": "vpce-kinesis-endpoint" # If using Kinesis
 }
}

Security group rules for Databricks
security_group_rules = {
 "inbound": [
 # Allow all traffic within security group (cluster communication)
 {"protocol": "all", "source": "self"},
 # No other inbound rules needed
],
 "outbound": [
 # Allow all outbound (required for Databricks control plane)
 {"protocol": "all", "destination": "0.0.0.0/0"}
 # Or restrict to specific CIDRs if using Private Link
]
}
4.2 Private Link Configuration
Private Link provides private connectivity to Databricks without traversing the public internet:
Azure Private Link configuration
azure_private_link = {
 # Backend Private Link (workspace to data plane)
 "backend_private_link": {
 "resource_id": "/subscriptions/.../privateLinkServices/databricks-backend",
 "private_endpoint_name": "databricks-backend-pe",
 "subnet_id": "/subscriptions/.../subnets/private-endpoints"
 },

 # Frontend Private Link (users to workspace UI/API)
 "frontend_private_link": {
 "resource_id": "/subscriptions/.../privateLinkServices/databricks-frontend",
 "private_endpoint_name": "databricks-frontend-pe",
 "subnet_id": "/subscriptions/.../subnets/private-endpoints"
 },

 # Private DNS zones for name resolution
 "private_dns_zones": [
 "privatelink.azuredatabricks.net",
 "privatelink.databricks.azure.com"
]
}

AWS PrivateLink configuration
aws_private_link = {
 # Workspace endpoint (REST API)
 "workspace_endpoint": {
 "service_name": "com.amazonaws.vpce.us-east-1.vpce-svc-xxx",
 "vpc_endpoint_id": "vpce-workspace-xxx"
 },

 # SCC relay endpoint (secure cluster connectivity)
 "scc_relay_endpoint": {
 "service_name": "com.amazonaws.vpce.us-east-1.vpce-svc-yyy",
 "vpc_endpoint_id": "vpce-scc-yyy"
 }
}
4.3 IP Access Lists
Restrict workspace access to known IP addresses:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.settings import (
 CreateIpAccessListRequest,
 IpAccessListType
)

w = WorkspaceClient()

Create IP access list for corporate network
corporate_access_list = w.ip_access_lists.create(
 label="Corporate Office IPs",
 list_type=IpAccessListType.ALLOW,
 ip_addresses=[
 "203.0.113.0/24", # Corporate office subnet
 "198.51.100.0/24", # VPN egress IPs
 "192.0.2.10/32" # Specific allowed IP
]
)

Create IP access list for CI/CD systems
cicd_access_list = w.ip_access_lists.create(
 label="CI/CD Pipeline IPs",
 list_type=IpAccessListType.ALLOW,
 ip_addresses=[
 "10.0.0.0/8" # GitHub Actions runners (example)
]
)

Block known malicious IPs (optional)
block_list = w.ip_access_lists.create(
 label="Blocked IPs",
 list_type=IpAccessListType.BLOCK,
 ip_addresses=[
 "192.168.1.100/32" # Known bad actor
]
)

Enable IP access list enforcement
Done in Admin Console > Workspace Settings > IP Access Lists
5. Data Security
5.1 Unity Catalog Access Control
Unity Catalog provides fine-grained access control for all data assets:
-- Create security hierarchy
CREATE CATALOG IF NOT EXISTS production;
CREATE SCHEMA IF NOT EXISTS production.sensitive_data;
CREATE SCHEMA IF NOT EXISTS production.analytics;

-- Grant catalog-level access
-- Users can see catalog exists but need schema grants for access
GRANT USE CATALOG ON CATALOG production TO `data-engineers`;
GRANT USE CATALOG ON CATALOG production TO `data-scientists`;
GRANT USE CATALOG ON CATALOG production TO `data-analysts`;

-- Grant schema-level access with different permissions
-- Data Engineers: Full access to ETL schemas
GRANT USE SCHEMA ON SCHEMA production.etl TO `data-engineers`;
GRANT CREATE TABLE ON SCHEMA production.etl TO `data-engineers`;
GRANT MODIFY ON SCHEMA production.etl TO `data-engineers`;
GRANT SELECT ON SCHEMA production.etl TO `data-engineers`;

-- Data Scientists: Read access to analytics, no access to PII
GRANT USE SCHEMA ON SCHEMA production.analytics TO `data-scientists`;
GRANT SELECT ON SCHEMA production.analytics TO `data-scientists`;
-- Note: No grant on production.sensitive_data

-- Data Analysts: Read-only access to specific tables
GRANT USE SCHEMA ON SCHEMA production.analytics TO `data-analysts`;
GRANT SELECT ON TABLE production.analytics.sales_summary TO `data-analysts`;
GRANT SELECT ON TABLE production.analytics.customer_segments TO `data-analysts`;
-- Explicit table grants for controlled access

-- View grants on an object
SHOW GRANTS ON TABLE production.analytics.sales_summary;
5.2 Row-Level and Column-Level Security
-- Row-Level Security using dynamic views
-- Only show data for user's assigned region
CREATE OR REPLACE VIEW production.analytics.regional_sales_v AS
SELECT *
FROM production.analytics.sales
WHERE region = CASE
 WHEN IS_ACCOUNT_GROUP_MEMBER('north-america-team') THEN 'NA'
 WHEN IS_ACCOUNT_GROUP_MEMBER('europe-team') THEN 'EU'
 WHEN IS_ACCOUNT_GROUP_MEMBER('apac-team') THEN 'APAC'
 WHEN IS_ACCOUNT_GROUP_MEMBER('data-admins') THEN region -- Admins see all
 ELSE NULL -- No access if not in any group
END;

-- Column-Level Security using views with masking
CREATE OR REPLACE VIEW production.analytics.customers_masked_v AS
SELECT
 customer_id,
 -- Mask email: show first 3 chars + domain for analysts
 CASE
 WHEN IS_ACCOUNT_GROUP_MEMBER('pii-authorized') THEN email
 ELSE CONCAT(LEFT(email, 3), '***@', SPLIT(email, '@')[1])
 END AS email,
 -- Mask phone: show last 4 digits only
 CASE
 WHEN IS_ACCOUNT_GROUP_MEMBER('pii-authorized') THEN phone
 ELSE CONCAT('***-***-', RIGHT(phone, 4))
 END AS phone,
 -- Mask SSN: always mask except for compliance team
 CASE
 WHEN IS_ACCOUNT_GROUP_MEMBER('compliance-team') THEN ssn
 ELSE '***-**-' || RIGHT(ssn, 4)
 END AS ssn,
 -- Non-PII fields shown as-is
 customer_segment,
 signup_date,
 region
FROM production.sensitive_data.customers;

-- Grant access to masked view instead of base table
GRANT SELECT ON VIEW production.analytics.customers_masked_v TO `data-analysts`;
5.3 Secrets Management
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

Create secret scope backed by Databricks
For production, use cloud-backed scopes (AWS Secrets Manager, Azure Key Vault)
w.secrets.create_scope(
 scope="production-secrets",
 scope_backend_type="DATABRICKS" # or "AZURE_KEYVAULT"
)

Store secrets
w.secrets.put_secret(
 scope="production-secrets",
 key="database-password",
 string_value="super-secret-password" # Never log this!
)

w.secrets.put_secret(
 scope="production-secrets",
 key="api-key",
 string_value="api-key-value"
)

Grant access to secret scope
MANAGE: Full control (create, read, write, delete)
WRITE: Can write secrets but not delete scope
READ: Can only read secrets
w.secrets.put_acl(
 scope="production-secrets",
 principal="data-engineers",
 permission="READ"
)

Using secrets in notebooks/code
Secrets are redacted in logs and notebook outputs
dbutils.secrets.get(scope="production-secrets", key="database-password")

Azure Key Vault-backed scope (recommended for Azure)
Created via ARM template or Azure CLI, then linked to Databricks
azure_keyvault_scope = {
 "scope": "akv-production",
 "backend_type": "AZURE_KEYVAULT",
 "keyvault_metadata": {
 "resource_id": "/subscriptions/.../vaults/production-keyvault",
 "dns_name": "https://production-keyvault.vault.azure.net/"
 }
}
5.4 Encryption Configuration
Customer-Managed Keys (CMK) for encryption at rest
Provides customer control over encryption keys

AWS CMK configuration
aws_cmk_config = {
 "managed_services_key": {
 # Encrypts notebook content, secrets, Git credentials
 "key_arn": "arn:aws:kms:us-east-1:123456789:key/12345-abcd-...",
 "key_alias": "alias/databricks-managed-services"
 },
 "storage_key": {
 # Encrypts data in DBFS root and cluster EBS volumes
 "key_arn": "arn:aws:kms:us-east-1:123456789:key/67890-efgh-...",
 "key_alias": "alias/databricks-storage"
 }
}

Azure CMK configuration
azure_cmk_config = {
 "managed_services_key": {
 "key_vault_id": "/subscriptions/.../vaults/databricks-keys",
 "key_name": "databricks-managed-services-key",
 "key_version": "1234567890abcdef"
 },
 "managed_disk_key": {
 "key_vault_id": "/subscriptions/.../vaults/databricks-keys",
 "key_name": "databricks-disk-key"
 }
}

Enable encryption in transit
TLS 1.2+ is enforced by default for all connections
Additional configuration for cluster-to-cluster encryption:
cluster_encryption_config = {
 "spark.databricks.cluster.encryption.enabled": "true",
 # Encrypts shuffle data between executors
 "spark.databricks.io.encryption.enabled": "true"
}
6. Audit and Compliance
6.1 Audit Log Configuration
Configure audit log delivery to cloud storage
Audit logs capture all workspace activities

AWS audit log configuration
aws_audit_config = {
 "log_delivery_configuration": {
 "log_type": "AUDIT_LOGS",
 "output_format": "JSON",
 "delivery_path_prefix": "databricks-audit-logs",
 "delivery_start_time": "2025-01-01T00:00:00Z"
 },
 "storage_configuration": {
 "bucket": "company-databricks-audit-logs",
 "region": "us-east-1"
 },
 "credentials_configuration": {
 "role_arn": "arn:aws:iam::123456789:role/databricks-audit-role"
 }
}

Azure audit log configuration (via Diagnostic Settings)
azure_audit_config = {
 "diagnostic_settings": {
 "name": "databricks-audit-to-storage",
 "logs": [
 {"category": "accounts", "enabled": True},
 {"category": "clusters", "enabled": True},
 {"category": "notebooks", "enabled": True},
 {"category": "jobs", "enabled": True},
 {"category": "secrets", "enabled": True},
 {"category": "unityCatalog", "enabled": True}
],
 "storage_account_id": "/subscriptions/.../storageAccounts/auditlogs",
 "log_analytics_workspace_id": "/subscriptions/.../workspaces/security"
 }
}
6.2 Analyzing Audit Logs
-- Create external table for audit logs
CREATE TABLE IF NOT EXISTS security.audit_logs
USING JSON
LOCATION 's3://company-databricks-audit-logs/';

-- Query user login events
SELECT
 DATE(timestamp) as login_date,
 userIdentity.email as user_email,
 sourceIPAddress,
 requestParams.user_agent,
 COUNT(*) as login_count
FROM security.audit_logs
WHERE actionName = 'login'
AND timestamp >= current_date() - INTERVAL 30 DAYS
GROUP BY DATE(timestamp), userIdentity.email, sourceIPAddress, requestParams.user_agent
ORDER BY login_date DESC;

-- Query sensitive data access
SELECT
 timestamp,
 userIdentity.email as user_email,
 actionName,
 requestParams.full_name_arg as table_accessed,
 sourceIPAddress
FROM security.audit_logs
WHERE serviceName = 'unityCatalog'
AND actionName IN ('getTable', 'executeStatement')
AND requestParams.full_name_arg LIKE '%sensitive%'
ORDER BY timestamp DESC;

-- Detect unusual access patterns
SELECT
 userIdentity.email,
 COUNT(DISTINCT DATE(timestamp)) as active_days,
 COUNT(*) as total_actions,
 COUNT(DISTINCT sourceIPAddress) as unique_ips,
 COLLECT_SET(actionName) as action_types
FROM security.audit_logs
WHERE timestamp >= current_date() - INTERVAL 7 DAYS
GROUP BY userIdentity.email
HAVING COUNT(DISTINCT sourceIPAddress) > 5 -- Flag users with many IPs
ORDER BY unique_ips DESC;
6.3 Compliance Reporting
-- Data access summary for compliance reporting
CREATE OR REPLACE VIEW security.data_access_report AS
SELECT
 DATE(timestamp) as access_date,
 userIdentity.email as accessor,
 CASE
 WHEN requestParams.full_name_arg LIKE '%pii%' THEN 'PII'
 WHEN requestParams.full_name_arg LIKE '%sensitive%' THEN 'Sensitive'
 WHEN requestParams.full_name_arg LIKE '%financial%' THEN 'Financial'
 ELSE 'General'
 END as data_classification,
 requestParams.full_name_arg as resource_accessed,
 actionName as action_type,
 CASE WHEN response.statusCode = 200 THEN 'Success' ELSE 'Failed' END as status
FROM security.audit_logs
WHERE serviceName = 'unityCatalog'
AND actionName IN ('getTable', 'executeStatement', 'createTable', 'deleteTable');

-- Generate monthly compliance report
SELECT
 access_date,
 data_classification,
 COUNT(DISTINCT accessor) as unique_users,
 COUNT(*) as total_accesses,
 SUM(CASE WHEN status = 'Failed' THEN 1 ELSE 0 END) as failed_attempts
FROM security.data_access_report
WHERE access_date >= DATE_TRUNC('month', current_date() - INTERVAL 1 MONTH)
AND access_date < DATE_TRUNC('month', current_date())
GROUP BY access_date, data_classification
ORDER BY access_date, data_classification;
7. Cluster Security
7.1 Secure Cluster Configuration
Recommended cluster security settings
secure_cluster_config = {
 "cluster_name": "secure-production-cluster",

 # Use latest LTS runtime with security patches
 "spark_version": "14.3.x-scala2.12",

 # Enable Unity Catalog
 "data_security_mode": "USER_ISOLATION", # or "SINGLE_USER"

 # Credential passthrough for cloud storage
 "aws_attributes": {
 "instance_profile_arn": "arn:aws:iam::123456789:instance-profile/databricks-cluster-profile"
 },

 # Disable public IPs for clusters
 "enable_elastic_disk": True,
 "enable_local_disk_encryption": True,

 # Security-focused Spark configuration
 "spark_conf": {
 # Enable encryption
 "spark.databricks.cluster.encryption.enabled": "true",
 "spark.databricks.io.encryption.enabled": "true",

 # Disable insecure features
 "spark.databricks.cluster.local.disk.encryption": "true",
 "spark.databricks.passthrough.enabled": "true",

 # Logging for security monitoring
 "spark.databricks.cluster.log.level": "INFO"
 },

 # Environment variables (use secrets, never hardcode)
 "spark_env_vars": {
 "DB_PASSWORD": "{{secrets/production-secrets/database-password}}"
 },

 # Restrict init scripts to trusted locations
 "init_scripts": [
 {
 "workspace": {
 "destination": "/Repos/security-approved/init_scripts/security_hardening.sh"
 }
 }
]
}
7.2 Cluster Policies
from databricks.sdk import WorkspaceClient
import json

w = WorkspaceClient()

Create restrictive cluster policy for production
production_policy = {
 "cluster_type": {
 "type": "fixed",
 "value": "all-purpose"
 },
 # Require Unity Catalog security mode
 "data_security_mode": {
 "type": "fixed",
 "value": "USER_ISOLATION"
 },
 # Restrict to approved instance types
 "node_type_id": {
 "type": "allowlist",
 "values": ["m5.xlarge", "m5.2xlarge", "m5.4xlarge"]
 },
 # Limit cluster size for cost control
 "autoscale.max_workers": {
 "type": "range",
 "maxValue": 10
 },
 # Auto-terminate idle clusters
 "autotermination_minutes": {
 "type": "range",
 "minValue": 30,
 "maxValue": 120,
 "defaultValue": 60
 },
 # Require specific runtime versions
 "spark_version": {
 "type": "regex",
 "pattern": "14\\.[0-9]+\\.x-.*" # Only 14.x runtimes
 },
 # Disable local disk (use EBS only)
 "enable_local_disk_encryption": {
 "type": "fixed",
 "value": True
 }
}

policy = w.cluster_policies.create(
 name="production-secure-policy",
 definition=json.dumps(production_policy)
)

Assign policy to group
w.permissions.set(
 object_type="cluster-policy",
 object_id=policy.policy_id,
 access_control_list=[
 {"group_name": "data-engineers", "permission_level": "CAN_USE"}
]
)
8. Security Monitoring and Alerting
8.1 Security Dashboards
-- Create security monitoring views

-- View: Failed authentication attempts
CREATE OR REPLACE VIEW security.failed_auth_attempts AS
SELECT
 DATE_TRUNC('hour', timestamp) as hour,
 userIdentity.email,
 sourceIPAddress,
 COUNT(*) as failure_count
FROM security.audit_logs
WHERE actionName = 'login'
AND response.statusCode != 200
GROUP BY DATE_TRUNC('hour', timestamp), userIdentity.email, sourceIPAddress;

-- View: Privilege escalation attempts
CREATE OR REPLACE VIEW security.privilege_escalation_attempts AS
SELECT
 timestamp,
 userIdentity.email as user,
 actionName,
 requestParams,
 response.statusCode,
 response.errorMessage
FROM security.audit_logs
WHERE actionName IN (
 'addPrincipalToGroup',
 'grantPermission',
 'setPermissions',
 'createServicePrincipal'
)
AND response.statusCode != 200;

-- View: Data exfiltration indicators
CREATE OR REPLACE VIEW security.data_export_activity AS
SELECT
 DATE(timestamp) as export_date,
 userIdentity.email as user,
 actionName,
 requestParams.path as export_path,
 requestParams.format as export_format
FROM security.audit_logs
WHERE actionName IN ('downloadResults', 'exportTable', 'writeFile')
ORDER BY timestamp DESC;
8.2 Automated Alerts
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.sql import AlertOptions, AlertState

w = WorkspaceClient()

Create alert for failed login threshold
failed_login_alert = w.alerts.create(
 name="High Failed Login Rate",
 query_id="security-failed-logins-query",
 options=AlertOptions(
 column="failure_count",
 op=">=",
 value="10", # Alert if 10+ failures
 muted=False
)
)

Create alert for sensitive data access outside business hours
after_hours_access_alert = w.alerts.create(
 name="After Hours Sensitive Data Access",
 query_id="security-after-hours-access-query",
 options=AlertOptions(
 column="access_count",
 op=">",
 value="0",
 muted=False
)
)

Configure alert destinations (email, Slack, PagerDuty)
Done via Admin Console > SQL > Alert Destinations
9. Security Checklist
9.1 Pre-Production Checklist
	Category
	Item
	Status

	Identity
	SSO configured and tested
	[]

	Identity
	SCIM provisioning enabled
	[]

	Identity
	Service principals use OAuth (not PATs)
	[]

	Network
	VPC/VNet deployed
	[]

	Network
	Private Link configured
	[]

	Network
	IP access lists enabled
	[]

	Data
	Unity Catalog enabled
	[]

	Data
	Data classification applied
	[]

	Data
	Row/column security implemented
	[]

	Data
	Secrets in secure scope
	[]

	Encryption
	CMK configured
	[]

	Encryption
	TLS 1.2+ enforced
	[]

	Audit
	Audit logs delivered to SIEM
	[]

	Audit
	Compliance views created
	[]

	Clusters
	Secure policies enforced
	[]

	Clusters
	Auto-termination enabled
	[]

Document Control
	Version
	Date
	Author
	Changes

	1.0
	2025-01-24
	Security Team
	Initial document

	2.0
	2025-01-29
	Security Team
	Added detailed examples, compliance reporting

This document is maintained by the Security & Compliance Team. For questions or updates, contact the team via the #security Slack channel.
image1.png
#MAST=CH
DIGITAL

